

The Kernel Report

FreedomHEC Taipei '09 edition

Jonathan Corbet
LWN.net

corbet@lwn.net

“Famous last words, but the actual
patch volume _has_ to drop off one
day. We have to finish this thing
one day."

 -- Andrew Morton
 September, 2005 (2.6.14)

v2.6.14 v2.6.15 v2.6.16 v2.6.17 v2.6.18 v2.6.19 v2.6.20 v2.6.21 v2.6.22 v2.6.23 v2.6.24 v2.6.25 v2.6.26 v2.6.27 v2.6.28 v2.6.29

0

2000

4000

6000

8000

10000

12000

14000

Changesets merged for release

2.6.26 -> 2.6.30

(July 13 2008 to June 5 2009)

43,000 changesets merged
 2,300 developers
 296 employers

The kernel grew by 2.1 million lines

2.6.26 -> 2.6.30

(July 13 2008 to June 5 2009)

43,000 changesets merged
 2,300 developers
 296 employers

The kernel grew by 2.1 million lines

In other words:
131 changes per day
6500 lines added every day

The employer stats

None 18%
Red Hat 12%
unknown 8%
Intel 7%
IBM 6%
Novell 6%
Oracle 4%
consultants 3%
Fujitsu 2%
Renesas Tech 1%

Analog Devices 1%
academics 1%
Parallels 1%
Sun 1%
Atheros 1%
AMD 1%
Nokia 1%
Marvell 1%
SGI 1%
Vyatta 1%

2.6.25 (April 16, 2008)

Hardware support
ath5k driver
R500 support

ext4 filesystem improvements

SMACK security module

Realtime group scheduling

Memory usage controller

2.6.26 (July 13, 2008)

Read-only bind mounts

More network namespaces

x86 PAT support

KGDB

2.6.27 (October 9, 2008)

Ftrace

UBIFS

Multiqueue networking

gspca video driver set

Block layer integrity checking

2.6.28 (December 24, 2008)

GEM graphics memory manager

ext4 is no longer experimental

-staging tree

Wireless USB

Container freezer

Tracepoints

2.6.29 (March 23, 2009)

Kernel mode setting

Filesystems
Btrfs
Squashfs

WIMAX support

4096 CPU support

2.6.30 (June 9?)

TOMOYO Linux

Integrity measurement

ext4 robustness fixes

R6xx/R7xx graphics
support

Adaptive spinning
mutexes

Object storage device
support

FS-Cache

Nilfs

preadv()/pwritev()

Threaded interrupt
handlers

...about finished?

...about finished?

...so what's left?

Networking

“Based on all the measurements I'm aware of,
Linux has the fastest & most complete stack of
any OS.”

-- Van Jacobson

Packet filtering and firewalling

iptables has served us well since 2.4

Problems:
Much duplicated code
Difficult user-space interface
Inflexible

Nftables

Remove protocol-awareness from the kernel
...replace with a dumb virtual machine

Rules are translated in user space

Advantages
Much smaller code base
Greater flexibility
Better performance

Other networking stuff

Network namespace development
...still...

Netfilter improvements

Reliable datagram sockets
for 2.6.30

802.15.4 stack (Zigbee and more)

Filesystems

How do we replace ext3/reiserfs/...?

How do we handle solid-state devices?

What guarantees for user space?

ext4

Advantages
Better performance
Many limits lifted
ext3 compatibility

Still stabilizing
But generally works quite well

Btrfs

A totally new filesystem

Advantages
Performance
Full checksumming
Snapshots
Internal volume management / RAID

Merged for 2.6.29
Still very experimental

Others

Nilfs
Log-structured filesystem
Versioning/snapshotting
Merged for 2.6.30

Exofs
Intended for object storage devices
Merged for 2.6.30

Network filesystems

CRFS
Coherent Remote Filesystem
oss.oracle.com/projects/crfs
Very early-stage

Pohmelfs
In -staging for 2.6.30
Fast filesystem with caching

pNFS
Distribute NFS across multiple servers
Linux support in the works

FS-Cache

Local caching for network filesystems
Big performance boost
Requires filesystem support

Also useful for slow, local filesystems
(CDROMs, for example)

Solid-state storage

SSDs present their own challenges
Transfer size and alignment constraints
Wear-leveling issues

Enhancements to existing filesystems
Performance improvements
Trim support

New filesystems
UBIFS
LogFS
NilFS

Solid-state storage

The longer-term problem:
SSDs will soon be capable of 100,000+ ops/second
Will the kernel be able to drive them that fast?

Robustness guarantees

ext3 raised the bar for crash robustness

ext4 tried to lower it again

I want a pony!

“The majority of [application developers] I know
felt that ext3 embodied the pony that they'd
always dreamed of as a five year old. Stephen
gave them that pony almost a decade ago and
now you're trying to take it to the glue factory.”

-- Matthew Garrett

What kind of guarantees do we owe our
application developers?

New APIs?

fbarrier()

acall()

readdirplus()

reflink()

kevents

A replacement for sockets

“Over the years, we've done lots of nice
'extended functionality' stuff. Nobody ever uses
them. The only thing that gets used is the
standard stuff that everybody else does too.”

-- Linus Torvalds

Virtualization

Mostly done - in the kernel, at least
Xen Dom0 still out-of-tree

Remaining work: performance, management

Containers

Lots of namespace work done
Still stabilizing

Yet to do:
Resource controllers
Checkpoint/restart

Photo: photohome_uk

Hardware support

Near universal

A few remaining problems
Graphics adapters
Some network adapters

The -staging tree
A home for substandard drivers

Power management

A variation on the hardware support problem

Power management

Photo: Terren in Virginia

Two approaches

The mainline approach:
Run each component at the lowest power level

The Android approach:
Suspend everything whenever possible

Realtime

“While we never had doubts that it would be
possible to turn Linux into a real time OS, it was
clear from the very beginning that it would be a
long way until the last bits and pieces got
merged.”

-- Thomas Gleixner

Status of realtime

Code is mostly stable
Shipped by numerous vendors

User-visible changes are all in mainline

What's not:
Threaded interrupt handlers
Sleeping mutexes
Lots of bits and pieces

Security

TOMOYO Linux
Pathname-based mandatory access control
2.6.30

Integrity measurement
2.6.30

Still waiting:
AppArmor
fanotify

Open issue: sandboxing

Tracing

Photo: Armel Genon

SystemTap

A powerful dynamic tracing environment

Some problems
Complex, difficult to use
Requires lots of ancillary data
Disconnect with kernel community

Alternatives

Ftrace
Lightweight kernel tracing facility
Popular with kernel developers

Linux Trace Toolkit
Well-developed static tracing toolkit
Extensive user-space tools

But...
Neither does dynamic tracing
Neither can trace user-space events

Participation

The kernel development community is growing

We still have trouble with:
Binary-only modules
Withheld code
Language barriers
Cultural differences
...

Documentation/development-process

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

